विमीय विश्लेषण

विमीय विश्लेषण

Jump to navigationJump to search
विमीय विश्लेषण (Dimensional analysis) एक संकाल्पनिक औजार (कांसेप्चुअल टूल) है जो भौतिकीरसायनप्रौद्योगिकीगणित एवं सांख्यिकी में प्रयुक्त होता है। यह वहाँ उपयोगी होता है जहाँ कई तरह की भौतिक राशियाँ किसी घटना के परिणाम के लिये जिम्मेदार हों। भौतिकविद अक्सर इसका उपयोग किसी समीकरण आदि कि वैधता (plausibility) की जाँच के लिये करते रहते हैं। दूसरी तरफ इसका उपयोग जटिल भौतिक स्थितियों से सम्बंधित चरों को आपस में समीकरण द्वारा जोड़ने के लिये किया जाता है। विमीय विश्लेषण की विधि से प्राप्त इन सम्भावित समीकरणों को प्रयोग द्वारा जाँचा जाता है, या अन्य सिद्धान्तों के प्रकाश में देखा जाता है। बकिंघम का पाई प्रमेय (Buckingham π theorem), विमीय विश्लेषण का आधार है।

    विकास का इतिहास

    न्यूटन द्वारा लिखित पुस्तक 'प्रिंसीपिया' (Principia) में विमाएँ तथा विमीय विश्लेषण 'सादृश्य का सिद्धांत' (Principle of Similitude) नाम से वर्णित हैं। इस विषय को बढ़ाने में जिन लोगों ने योगदान दिया है, वे हैं : ई. बकिंघम (E. Buckingham), लार्ड रैलि (Lord Rayleigh) और पी. डब्ल्यू. ब्रिजमैन (P. W. Bridgman)। प्रारंभ में विमीय विश्लेषण यांत्रिकी (mechanics) की समस्याओं में प्रयुक्त किया गया, किंतु आजकल यह सभी प्रकार की भौतिकी एवं इंजीनियरी की समस्याओं में प्रयुक्त होने लगा है। विमीय विश्लेषण का मान उसकी इस क्षमता में है कि भौतिकविज्ञानी और इंजीनियर के प्रतिदिन की सैद्धांतिक एवं प्रायोगिक समस्याओं के समाधान में यह सहायक होता है।

    परिचय

    संपूर्ण भौतिक राशियाँ दो वर्गों में विभाजित की जाती हैं :
    • (क) मौलिक (Fundamental) तथा
    • (ख) व्युत्पन्न (Derived)।
    यांत्रिक समस्याओं में तीन स्पष्ट प्राथमिक राशियों (distinct primary quantities), लंबाई (length = L), द्रव्यमान (mass = M), तथा समय (time = T), को मान्यता मिली थी। किंतु यदि चुंबकीय, विद्युतीय और ऊष्मीय राशियों के लिए भी इनका उपयोग करें तो हमें बाध्य होकर दो अन्य राशियों (विद्युत् धारा I एवं ताप Θ) को समाविष्ट करना होगा। अन्य सभी व्युत्पन्न भौतिक राशियों को इन पाँच मौलिक राशियों के पदों में व्यक्त कर सकते हैं।
    बाद में परम ताप तथा ज्योति तीव्रता को भी मूल मात्रक मान लिया गया।
    मूल राशिविमाSI मात्रक
    द्रव्यमानMkg
    लम्बाईLm
    समयTs
    परम तापΘK
    विद्युत धाराIA
    दीप्त तीव्रताJcd
    पदार्थ की मात्राNmol
    उदाहरण के लिए, बल की विमा M L T-2, ऊष्मा चालकता की विमा L M T-3 q-1 और धारिता की विमा Q2 T2 M-1 L-2 हैं। वास्तविक उपयोग में मात्रक पद्धति (system of units) प्रयोग में आती है :
    कुछ यांत्रिक राशियों की विमाएँ तथा मात्रक नीचे की सारणी में दिए गये हैं।

    भौतिक राशिप्रतीकमात्रकविमीय सूत्र
    द्रव्यमानmkg
    लम्बाईl, b, h, …m
    समयts
    आवृत्तिfHz (=1/s)
    कोणीय वेगω1/s
    वेगvm/s
    त्वरणam/s²
    संवेगpm kg/s
    घनत्वρkg/m³
    बलFN (= kg ·m/s²)
    विशिष्ट भारγN/m³
    दाबप्रतिबलpN/m²
    यंग प्रत्यास्थता गुणांकEN/m²
    ऊर्जाWJ (= m²·kg/s²)
    शक्तिPW (= m²·kg/s³)
    गतिक श्यानताμN·s/m²
    काइनेटिक श्यानताνm²/s

    विमीय विश्लेषण के सिद्धांत

    जल किसी समीकरण का रूप मापन (measurement) के मौलिक मात्रकों (fundamental units) पर निर्भर नहीं करता, तब वह विमीय रूप से समांगी (Homogeneous) कहलाता है। उदाहरण के लिए, सरल लोलक का दोलनकाल T = (1/2 pi) * (1/g)0.5 मान्य है चाहे लंबाई फुट या मीटर में नापी गई हो, अथवा समय T मिनट या सेकंड में नापा गया हो। किसी प्रश्न के विमीय विश्लेषण का प्रथम सोपान प्रश्न में आए चरों (variables) का निर्णय करता है। यदि घटना (phenomenon) में वे चर, जो वास्तव में प्रभावहीन हैं, प्रयुक्त होते हैं, तो अंतिम समीकरण में बड़ी संख्या में पद दिखाई पड़ेंगे। फिर हम प्रदत्त चर-समुच्चय (set) के विमाविहीन उत्पादों (products) के पूर्ण समुच्चय का परिकलन (calculation) करते हैं और उनके बीच एक सामान्य संबंध लिखते हैं। इस संबंध में ई. बकिंहैम द्वारा प्रणीत निम्नलिखित मौलिक प्रमेय महत्वपूर्ण है :
    यदि कोई समीकरण विमीय रूप से समांगी है, तो वह विमाविहीन उत्पादों के पूर्ण समुच्चय के, जिसकी संख्या प्रश्न में समाविष्ट भौतिक चरों की संख्या एवं मौलिक प्राथमिक राशियों की संख्या के अंतर (जिनके पदों में वे व्यक्त किए जाते हैं) के बराबर होती है, संबंध में बदला जा सकता है।
    विलोमत: इसे इस तरह कहा जा सकता है कि यदि मौलिक चरों का संबंध इन चरों के उत्पादों के निम्नतम समुच्चय में बदला जा सकता है, तो ये सभी उत्पाद विमाविहीन होंगे। बकिंहैम का प्रमेय, जिसे द्वितीय (p) प्रमेय भी कहते हैं, विमीय विश्लेषण के संपूर्ण सिद्धांत का सारांश प्रस्तुत करता है।

    उदाहरण

    किसी पाइप से तरल का प्रवाह होने पर दाब में कमी होती जाती है। माना यह कमी निम्नलिखित राशियों पर निर्भर करती है-
    जहाँ  से  तक नियतक संख्याएँ हैं।और,
        
    दोनों तरफ की राशियों की विमाओं को लिकहर सरल करने पर,
    विमीय विश्लेषण के सिद्धान्त के अनुसार, एक ही भौतिक राशि पर दोनों तरफ घात समान होंगे। अतः
    for 
    उपरोक्त समीकरणों को हल करने पर (B और E को छोड़कर शेष राशियों का बिलोपन करने पर)
    अन्ततः निम्नलिखित सूत्र प्राप्त होते हैं:
    जहाँ Re – रेनल्ड्स संख्या, Eu – आइलर संख्या है।
    विमीय विश्लेषण विमीय विश्लेषण Reviewed by rajyashikshasewa.blogspot.com on 10:42 PM Rating: 5

    No comments:

    Powered by Blogger.